Voltaat Arduino Ultimate Kit
180 min
Share

How to Build an Arduino-based Memory Game

If you are a beginner looking for a fun way to start off your Arduino education, this memory game project is for you!

Project Video

Overview

In this project, we are going to create a memory game that challenges your memory by recalling randomly generated sequences of multi-colored LEDs.

Getting the Items

Arduino Uno R3 (Voltaat Version)
Get Item
LED Kit – (4 colors, 5 pieces each)
Get Item
Push button Switch (5 Pack) - 12mm
Get Item
Passive Buzzer – 5V
Get Item
1/4 Watt Resistor (20 Pack)
Get Item
Full-size Breadboard
Get Item
Jumper Wires - Male to Male (40 Pack)
Get Item

Steps

Wiring it Up

Connect the wires between the Arduino and the leds and the push buttons and the buzzer as shown in the image below.

Connections from the Arduino to the breadboard:

 

• Arduino GND pin →Breadboard ground line

• Arduino 5V pin →Breadboard 5V line

 

 

Connections from the first push button:

 

• Right pin → Breadboard 5v line

• Left pin → Arduino pin 2

• Left pin →10KΩ resistor → Breadboard GND line

 

 

Connections from the second push button:

 

• Right pin → Breadboard 5v line

• Left pin → Arduino pin 4

• Left pin →10KΩ resistor → Breadboard GND line

 

 

 

Connections from the third push button:

 

• Right pin → Breadboard 5v line

• Left pin→ Arduino pin 6

• Left pin→10KΩ resistor → Breadboard GND line

 

 

 

Connections from the fourth push button:

 

• Right pin→ Breadboard 5v line

• Left pin→ Arduino pin 8

• Left pin→10KΩresistor → Breadboard GND line

 

 

 

Connections from the first LED :

 

• LED anode pin → Arduino pin 3

• LED cathode pin →330 ohm resistor first pin → Breadboard ground line

 

 

 

Connections from the second LED :

 

• LED anode pin →Arduino pin 5

• LED cathode pin →330 ohm resistor first pin → Breadboard ground line

 

 

Connections from the third LED :

 

• LED anode pin →Arduino pin 7

• LED cathode pin →330 ohm resistor first pin → Breadboard ground line

 

 

 

Connections from the fourth LED :

 

• LED anode pin →Arduino pin 9

• LED cathode pin →330 ohm resistor first pin → Breadboard ground line

 

 

 

Connections from the Arduino to the passive buzzer:

 

• buzzer GND pin (-pin)  →  Arduino pin 10

• buzzer VCC pin (+pin) Arduino pin 11

 

 

Coding

/*

 Voltaat learn (http://learn.voltaat.com)

 Link for full tutorial:

 Tutorial: How to Build an Arduino-based Memory Game!

 

 The purpose of this sketch is to make an Arduino-based Memory Game, as the four LEDs blink in a certain,

 random pattern and the player has to imitate the same pattern to level up, and eventually win, the game.

 If the player enters a pattern incorrectly, they lose the game and it starts a new pattern.

                               

Connections from the Arduino to the breadboard:

• Arduino GND pin → Breadboard ground line

• Arduino 5V pin → Breadboard 5V line

Connections from the first push button:

• Right pin→ Breadboard 5v line

• Left pin→ Arduino pin 2

• Left pin→10KΩ resistor → Breadboard GND line

Connections from the second push button:

• Right pin→ Breadboard 5v line

• Left pin→ Arduino pin 4

• Left pin→10KΩ resistor → Breadboard GND line

Connections from the third push button:

• Right pin→ Breadboard 5v line

• Left pin→ Arduino pin 6

• Left pin→10KΩ resistor → Breadboard GND line

Connections from the fourth push button:

• Right pin→ Breadboard 5v line

• Left pin→ Arduino pin 8

• Left pin→10KΩ resistor → Breadboard GND line

Connections from the first LED :

• LED anode pin → Arduino pin 3

• LED cathode pin → 330 ohm resistor first pin → Breadboard ground line

Connections from the second LED :

• LED anode pin → Arduino pin 5

• LED cathode pin → 330 ohm resistor first pin → Breadboard ground line

Connections from the third LED :

• LED anode pin → Arduino pin 7

• LED cathode pin → 330 ohm resistor first pin → Breadboard ground line

Connections from the fourth LED :

• LED anode pin → Arduino pin 9

• LED cathode pin → 330 ohm resistor first pin → Breadboard ground line

Connections from the Arduino to the passive buzzer:

• buzzer GND pin (- pin)  →  Arduino pin 10

• buzzer VCC pin (+ pin)  →  Arduino pin 11

*/

#define NOTE_B0 31

#define NOTE_C1 33

#define NOTE_CS1 35

#define NOTE_D1 37

#define NOTE_DS1 39

#define NOTE_E1 41

#define NOTE_F1 44

#define NOTE_FS1 46

#define NOTE_G1 49

#define NOTE_GS1 52

#define NOTE_A1 55

#define NOTE_AS1 58

#define NOTE_B1 62

#define NOTE_C2 65

#define NOTE_CS2 69

#define NOTE_D2 73

#define NOTE_DS2 78

#define NOTE_E2 82

#define NOTE_F2 87

#define NOTE_FS2 93

#define NOTE_G2 98

#define NOTE_GS2 104

#define NOTE_A2 110

#define NOTE_AS2 117

#define NOTE_B2 123

#define NOTE_C3 131

#define NOTE_CS3 139

#define NOTE_D3 147

#define NOTE_DS3 156

#define NOTE_E3 165

#define NOTE_F3 175

#define NOTE_FS3 185

#define NOTE_G3 196

#define NOTE_GS3 208

#define NOTE_A3 220

#define NOTE_AS3 233

#define NOTE_B3 247

#define NOTE_C4 262

#define NOTE_CS4 277

#define NOTE_D4 294

#define NOTE_DS4 311

#define NOTE_E4 330

#define NOTE_F4 349

#define NOTE_FS4 370

#define NOTE_G4 392

#define NOTE_GS4 415

#define NOTE_A4 440

#define NOTE_AS4 466

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_CS5 554

#define NOTE_D5 587

#define NOTE_DS5 622

#define NOTE_E5 659

#define NOTE_F5 698

#define NOTE_FS5 740

#define NOTE_G5 784

#define NOTE_GS5 831

#define NOTE_A5 880

#define NOTE_AS5 932

#define NOTE_B5 988

#define NOTE_C6 1047

#define NOTE_CS6 1109

#define NOTE_D6 1175

#define NOTE_DS6 1245

#define NOTE_E6 1319

#define NOTE_F6 1397

#define NOTE_FS6 1480

#define NOTE_G6 1568

#define NOTE_GS6 1661

#define NOTE_A6 1760

#define NOTE_AS6 1865

#define NOTE_B6 1976

#define NOTE_C7 2093

#define NOTE_CS7 2217

#define NOTE_D7 2349

#define NOTE_DS7 2489

#define NOTE_E7 2637

#define NOTE_F7 2794

#define NOTE_FS7 2960

#define NOTE_G7 3136

#define NOTE_GS7 3322

#define NOTE_A7 3520

#define NOTE_AS7 3729

#define NOTE_B7 3951

#define NOTE_C8 4186

#define NOTE_CS8 4435

#define NOTE_D8 4699

#define NOTE_DS8 4978

#define CHOICE_OFF      0 //Used to control LEDs

#define CHOICE_NONE     0 //Used to check buttons

#define CHOICE_RED  (1 << 0)

#define CHOICE_GREEN    (1 << 1)

#define CHOICE_BLUE (1 << 2)

#define CHOICE_YELLOW   (1 << 3)

#define BUTTON_BLUE   2

#define LED_BLUE    3

#define BUTTON_RED    4

#define LED_RED     5

#define BUTTON_YELLOW 6

#define LED_YELLOW  7

#define BUTTON_GREEN  8

#define LED_GREEN   9

// Buzzer pin definitions

#define BUZZER1  10

#define BUZZER2  11

// Define game parameters

#define ROUNDS_TO_WIN      13 //Number of rounds to succesfully remember before you win. 13 is do-able.

#define ENTRY_TIME_LIMIT   3000 //Amount of time to press a button before game times out. 3000ms = 3 sec

#define MODE_MEMORY  0

#define MODE_BATTLE  1

#define MODE_BEEGEES 2

// Game state variables

byte gameMode = MODE_MEMORY; //By default, let's play the memory game

byte gameBoard[32]; //Contains the combination of buttons as we advance

byte gameRound = 0; //Counts the number of succesful rounds the player has made it through

void setup()

{

 //Setup hardware inputs/outputs. These pins are defined in the hardware_versions header file

 //Enable pull ups on inputs

 pinMode(BUTTON_RED, INPUT);

 pinMode(BUTTON_GREEN, INPUT);

 pinMode(BUTTON_BLUE, INPUT);

 pinMode(BUTTON_YELLOW, INPUT);

 pinMode(LED_RED, OUTPUT);

 pinMode(LED_GREEN, OUTPUT);

 pinMode(LED_BLUE, OUTPUT);

 pinMode(LED_YELLOW, OUTPUT);

 pinMode(BUZZER1, OUTPUT);

 pinMode(BUZZER2, OUTPUT);

 //Mode checking

 gameMode = MODE_MEMORY; // By default, we're going to play the memory game

 // Check to see if the lower right button is pressed

 if (checkButton() == CHOICE_YELLOW) play_beegees();

 // Check to see if upper right button is pressed

 if (checkButton() == CHOICE_GREEN)

 {

   gameMode = MODE_BATTLE; //Put game into battle mode

   //Turn on the upper right (green) LED

   setLEDs(CHOICE_GREEN);

   toner(CHOICE_GREEN, 150);

   setLEDs(CHOICE_RED | CHOICE_BLUE | CHOICE_YELLOW); // Turn on the other LEDs until you release button

   while(checkButton() != CHOICE_NONE) ; // Wait for user to stop pressing button

   //Now do nothing. Battle mode will be serviced in the main routine

 }

 play_winner(); // After setup is complete, say hello to the world

}

void loop()

{

 attractMode(); // Blink lights while waiting for user to press a button

 // Indicate the start of game play

 setLEDs(CHOICE_RED | CHOICE_GREEN | CHOICE_BLUE | CHOICE_YELLOW); // Turn all LEDs on

 delay(1000);

 setLEDs(CHOICE_OFF); // Turn off LEDs

 delay(250);

 if (gameMode == MODE_MEMORY)

 {

   // Play memory game and handle result

   if (play_memory() == true)

     play_winner(); // Player won, play winner tones

   else

     play_loser(); // Player lost, play loser tones

 }

 if (gameMode == MODE_BATTLE)

 {

   play_battle(); // Play game until someone loses

   play_loser(); // Player lost, play loser tones

 }

}

//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

//The following functions are related to game play only

// Play the regular memory game

// Returns 0 if player loses, or 1 if player wins

boolean play_memory(void)

{

 randomSeed(millis()); // Seed the random generator with random amount of millis()

 gameRound = 0; // Reset the game to the beginning

 while (gameRound < ROUNDS_TO_WIN)

 {

   add_to_moves(); // Add a button to the current moves, then play them back

   playMoves(); // Play back the current game board

   // Then require the player to repeat the sequence.

   for (byte currentMove = 0 ; currentMove < gameRound ; currentMove++)

   {

     byte choice = wait_for_button(); // See what button the user presses

     if (choice == 0) return false; // If wait timed out, player loses

     if (choice != gameBoard[currentMove]) return false; // If the choice is incorect, player loses

   }

   delay(1000); // Player was correct, delay before playing moves

 }

 return true; // Player made it through all the rounds to win!

}

// Play the special 2 player battle mode

// A player begins by pressing a button then handing it to the other player

// That player repeats the button and adds one, then passes back.

// This function returns when someone loses

boolean play_battle(void)

{

 gameRound = 0; // Reset the game frame back to one frame

 while (1) // Loop until someone fails

 {

   byte newButton = wait_for_button(); // Wait for user to input next move

   gameBoard[gameRound++] = newButton; // Add this new button to the game array

   // Then require the player to repeat the sequence.

   for (byte currentMove = 0 ; currentMove < gameRound ; currentMove++)

   {

     byte choice = wait_for_button();

     if (choice == 0) return false; // If wait timed out, player loses.

     if (choice != gameBoard[currentMove]) return false; // If the choice is incorect, player loses.

   }

   delay(100); // Give the user an extra 100ms to hand the game to the other player

 }

 return true; // We should never get here

}

// Plays the current contents of the game moves

void playMoves(void)

{

 for (byte currentMove = 0 ; currentMove < gameRound ; currentMove++)

 {

   toner(gameBoard[currentMove], 150);

   // Wait some amount of time between button playback

   // Shorten this to make game harder

   delay(150); // 150 works well. 75 gets fast.

 }

}

// Adds a new random button to the game sequence, by sampling the timer

void add_to_moves(void)

{

 byte newButton = random(0, 4); //min (included), max (exluded)

 // We have to convert this number, 0 to 3, to CHOICEs

 if(newButton == 0) newButton = CHOICE_RED;

 else if(newButton == 1) newButton = CHOICE_GREEN;

 else if(newButton == 2) newButton = CHOICE_BLUE;

 else if(newButton == 3) newButton = CHOICE_YELLOW;

 gameBoard[gameRound++] = newButton; // Add this new button to the game array

}

//The following functions control the hardware

// Lights a given LEDs

// Pass in a byte that is made up from CHOICE_RED, CHOICE_YELLOW, etc

void setLEDs(byte leds)

{

 if ((leds & CHOICE_RED) != 0)

   digitalWrite(LED_RED, HIGH);

 else

   digitalWrite(LED_RED, LOW);

 if ((leds & CHOICE_GREEN) != 0)

   digitalWrite(LED_GREEN, HIGH);

 else

   digitalWrite(LED_GREEN, LOW);

 if ((leds & CHOICE_BLUE) != 0)

   digitalWrite(LED_BLUE, HIGH);

 else

   digitalWrite(LED_BLUE, LOW);

 if ((leds & CHOICE_YELLOW) != 0)

   digitalWrite(LED_YELLOW, HIGH);

 else

   digitalWrite(LED_YELLOW, LOW);

}

// Wait for a button to be pressed.

// Returns one of LED colors (LED_RED, etc.) if successful, 0 if timed out

byte wait_for_button(void)

{

 long startTime = millis(); // Remember the time we started the this loop

 while ( (millis() - startTime) < ENTRY_TIME_LIMIT) // Loop until too much time has passed

 {

   byte button = checkButton();

   if (button != CHOICE_NONE)

   {

     toner(button, 150); // Play the button the user just pressed

     while(checkButton() != CHOICE_NONE) ;  // Now let's wait for user to release button

     delay(10); // This helps with debouncing and accidental double taps

     return button;

   }

 }

 return CHOICE_NONE; // If we get here, we've timed out!

}

// Returns a '1' bit in the position corresponding to CHOICE_RED, CHOICE_GREEN, etc.

byte checkButton(void)

{

 if (digitalRead(BUTTON_RED) == 1) return(CHOICE_RED);

 else if (digitalRead(BUTTON_GREEN) == 1) return(CHOICE_GREEN);

 else if (digitalRead(BUTTON_BLUE) == 1) return(CHOICE_BLUE);

 else if (digitalRead(BUTTON_YELLOW) == 1) return(CHOICE_YELLOW);

 return(CHOICE_NONE); // If no button is pressed, return none

}

// Light an LED and play tone

// Red, upper left:     440Hz - 2.272ms - 1.136ms pulse

// Green, upper right:  880Hz - 1.136ms - 0.568ms pulse

// Blue, lower left:    587.33Hz - 1.702ms - 0.851ms pulse

// Yellow, lower right: 784Hz - 1.276ms - 0.638ms pulse

void toner(byte which, int buzz_length_ms)

{

 setLEDs(which); //Turn on a given LED

 //Play the sound associated with the given LED

 switch(which)

 {

 case CHOICE_RED:

   buzz_sound(buzz_length_ms, 1136);

   break;

 case CHOICE_GREEN:

   buzz_sound(buzz_length_ms, 568);

   break;

 case CHOICE_BLUE:

   buzz_sound(buzz_length_ms, 851);

   break;

 case CHOICE_YELLOW:

   buzz_sound(buzz_length_ms, 638);

   break;

 }

 setLEDs(CHOICE_OFF); // Turn off all LEDs

}

// Toggle buzzer every buzz_delay_us, for a duration of buzz_length_ms.

void buzz_sound(int buzz_length_ms, int buzz_delay_us)

{

 // Convert total play time from milliseconds to microseconds

 long buzz_length_us = buzz_length_ms * (long)1000;

 // Loop until the remaining play time is less than a single buzz_delay_us

 while (buzz_length_us > (buzz_delay_us * 2))

 {

   buzz_length_us -= buzz_delay_us * 2; //Decrease the remaining play time

   // Toggle the buzzer at various speeds

   digitalWrite(BUZZER1, LOW);

   digitalWrite(BUZZER2, HIGH);

   delayMicroseconds(buzz_delay_us);

   digitalWrite(BUZZER1, HIGH);

   digitalWrite(BUZZER2, LOW);

   delayMicroseconds(buzz_delay_us);

 }

}

// Play the winner sound and lights

void play_winner(void)

{

 setLEDs(CHOICE_GREEN | CHOICE_BLUE);

 winner_sound();

 setLEDs(CHOICE_RED | CHOICE_YELLOW);

 winner_sound();

 setLEDs(CHOICE_GREEN | CHOICE_BLUE);

 winner_sound();

 setLEDs(CHOICE_RED | CHOICE_YELLOW);

 winner_sound();

}

// Play the winner sound

// This is just a unique (annoying) sound we came up with, there is no magic to it

void winner_sound(void)

{

 // Toggle the buzzer at various speeds

 for (byte x = 250 ; x > 70 ; x--)

 {

   for (byte y = 0 ; y < 3 ; y++)

   {

     digitalWrite(BUZZER2, HIGH);

     digitalWrite(BUZZER1, LOW);

     delayMicroseconds(x);

     digitalWrite(BUZZER2, LOW);

     digitalWrite(BUZZER1, HIGH);

     delayMicroseconds(x);

   }

 }

}

// Play the loser sound/lights

void play_loser(void)

{

 setLEDs(CHOICE_RED | CHOICE_GREEN);

 buzz_sound(255, 1500);

 setLEDs(CHOICE_BLUE | CHOICE_YELLOW);

 buzz_sound(255, 1500);

 setLEDs(CHOICE_RED | CHOICE_GREEN);

 buzz_sound(255, 1500);

 setLEDs(CHOICE_BLUE | CHOICE_YELLOW);

 buzz_sound(255, 1500);

}

// Show an "attract mode" display while waiting for user to press button.

void attractMode(void)

{

 while(1)

 {

   setLEDs(CHOICE_RED);

   delay(100);

   if (checkButton() != CHOICE_NONE) return;

   setLEDs(CHOICE_BLUE);

   delay(100);

   if (checkButton() != CHOICE_NONE) return;

   setLEDs(CHOICE_GREEN);

   delay(100);

   if (checkButton() != CHOICE_NONE) return;

   setLEDs(CHOICE_YELLOW);

   delay(100);

   if (checkButton() != CHOICE_NONE) return;

 }

}

// Notes in the melody. Each note is about an 1/8th note, "0"s are rests.

int melody[] = {

 NOTE_G4, NOTE_A4, 0, NOTE_C5, 0, 0, NOTE_G4, 0, 0, 0,

 NOTE_E4, 0, NOTE_D4, NOTE_E4, NOTE_G4, 0,

 NOTE_D4, NOTE_E4, 0, NOTE_G4, 0, 0,

 NOTE_D4, 0, NOTE_E4, 0, NOTE_G4, 0, NOTE_A4, 0, NOTE_C5, 0};

int noteDuration = 115; // This essentially sets the tempo, 115 is just about right for a disco groove :)

int LEDnumber = 0; // Keeps track of which LED we are on during the beegees loop

// Do nothing but play bad beegees music

// This function is activated when user holds bottom right button during power up

void play_beegees()

{

 //Turn on the bottom right (yellow) LED

 setLEDs(CHOICE_YELLOW);

 toner(CHOICE_YELLOW, 150);

 setLEDs(CHOICE_RED | CHOICE_GREEN | CHOICE_BLUE); // Turn on the other LEDs until you release button

 while(checkButton() != CHOICE_NONE) ; // Wait for user to stop pressing button

 setLEDs(CHOICE_NONE); // Turn off LEDs

 delay(1000); // Wait a second before playing song

 digitalWrite(BUZZER1, LOW); // setup the "BUZZER1" side of the buzzer to stay low, while we play the tone on the other pin.

 while(checkButton() == CHOICE_NONE) //Play song until you press a button

 {

   // iterate over the notes of the melody:

   for (int thisNote = 0; thisNote < 32; thisNote++) {

     changeLED();

     tone(BUZZER2, melody[thisNote],noteDuration);

     // to distinguish the notes, set a minimum time between them.

     // the note's duration + 30% seems to work well:

     int pauseBetweenNotes = noteDuration * 1.30;

     delay(pauseBetweenNotes);

     // stop the tone playing:

     noTone(BUZZER2);

   }

 }

}

// Each time this function is called the board moves to the next LED

void changeLED(void)

{

 setLEDs(1 << LEDnumber); // Change the LED

 LEDnumber++; // Goto the next LED

 if(LEDnumber > 3) LEDnumber = 0; // Wrap the counter if needed

}

Testing it Out

Once you’ve uploaded the code to the Arduino board, you will find that the four LEDs blink in a certain, random pattern and you have to imitate the same pattern to level up, and eventually win, the game. If you enter a pattern incorrectly, they lose the game and it starts a new pattern.

Resources

No items found.